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ABSTRACT 

Aims: With the advances in nanotechnology, pure silver has recently been 

engineered into nanosized particles with diameter less than 100 nm and utilized in 

the treatment of wounds. Together with other studies, we have previously 

demonstrated that topical application of silver nanoparticles (AgNPs) could promote 

wound healing through a modulation of cytokines. Nonetheless, the question of 

whether silver nanoparticles have the potential to affect various skin cell types - 

keratinocytes and fibroblasts, during the process of wound healing still remains. The 

aim of this study was therefore to focus on the cellular response and events of 

dermal contraction and epidermal re-epithelization during wound healing under the 

influence of nanosilver. 

Materials & Methods: We employed a using a full-thickness excisional wound 

model in mice. The wounds were treated with either nanosilver particles or control 

with silver sulphadiazine. The proliferation and biological events of keratinocytes 

and fibroblasts during healing were studied. 

Results: Our results confirmed that silver nanoparticles could increase the rate of 

wound closure. This was achieved, on one hand, through the promotion of 

proliferation and migration of keratinocytes. On the other hand, AgNPs could drive 

the differentiation of fibroblasts into myofibroblasts, thereby promoting wound 

contraction.  

Conclusions: These findings have further extended our current knowledge of silver 

nanoparticles in biological and cellular events and also have significant implications 
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for the treatment of wounds in the clinical setting. 
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INTRODUCTION  

Healing of wound is a complex and multiple-step process involving integration of 

activities of different tissues and cell lineages.[1] Re-epithelization, a crucial process 

during the early phase of wound healing, occurs not only by the migration and 

proliferation of keratinocytes in the epidermal layer of skin from the wound edge, but 

also by differentiation of stem cells residing in the bulge of hair follicle.[2] Rapid 

re-epithelization after wounding will provide an optimum environment, such as a 

scaffold of cells and various growth factors, which are indispensable in wound 

healing. Further to re-epithelialization, wound contraction is another important 

process in the early phase of wound healing. It minimizes the open area by pulling 

the neighboring tissue towards the wound center. In this process, alpha smooth 

muscle actins (α-SMA), generated from myofibrobalsts, play a vital role in wound 

contraction. Myofibroblasts differentiated from fibroblasts generate the contractile 

force, through which the wound area could contract during wound healing.[3-4] This 

process occurs faster than re-epithelialization because no cell proliferation is 

involved.[5] Thus, intensive research of developing new drugs and technologies, are 

being currently pursued, for the promotion of re-epithelization and wound 

contraction. 

Although silver nitrate was used as a disinfecting agent for wounds as far back as 

World War I, the current use of silver agents has been reduced to topical silver 

sulfadiazine cream in the treatment of burn wounds because of the availability of 

excellent and effective antibiotics.[6-11] Renewed interest in silver only rekindled after 
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nanotechnology has made it possible to produce pure silver particles in the 

nano-scale. In the case of exposing cells or tissue to silver nanoparticles (AgNPs), 

the active surface would be significantly larger compared to silver compounds, and 

thereby exhibiting remarkably unusual physicochemical properties and biological 

activities.  

In our previous work using a burn wound model in mice, we demonstrated that 

silver nanoparticles promoted wound healing through its powerful antibacterial 

property, as well as its ability to reduce inflammation.[12-13] Nonetheless, the 

observed findings were only the end result of the complex interplay between various 

resident skin cell types and the recruited inflammatory cells. The question thus 

remains on whether silver nanoparticles can have individual effects on various the 

skin cell types. This is particularly important in the wound healing process since 

re-epithelization and wound contraction represent two components mediated by two 

different cell types – keratinocytes and fibroblasts. In this study, we chose an 

excisional wound model because this model provided a relatively cleaner wound 

than the burn wound and therefore could reduce the potential effect of the infective 

factor. Furthermore, we could separate and observe more clearly the cellular events 

occurring in keratinocytes and fibroblasts during wound healing. Our results showed 

that silver nanoparticles could indeed mediate different events in keratinocytes and 

fibroblasts. On the one hand, there was an increase in the rate of proliferation of 

keratinocytes after wounding. In contrast, proliferation of fibroblasts was suppressed, 

but with subsequent drive towards differentiation into myofibroblasts. The findings 
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have further improved our existing knowledge in the action of silver nanoparticles 

on a cellular level and we also showed for the first time that this precious metal 

could have differential effects on different cell types.  

 

MATERIALS AND METHODS 

Animals    

C57BL/6N aged between 6-8 weeks old, weighing between 16-22 grams were 

obtained from the Laboratory Animal Unit, The University of Hong Kong. The 

animals were allowed diet and water ad libitum in a 12-hour light, 12-hour dark 

cycled room. The experimental protocol was approved by the Committee of the Use 

of Live Animals in Teaching and Research, The University of Hong Kong 

(CULATR 1599-08). Anesthesia for experimentation was achieved with an 

intra-peritoneal injection of pentobarbital sodium solution (Abbott Laboratories, 

U.S.A) at a dose of 50 mg/Kg. 

 

Nanosilver particles and other silver preparations    

Nanosilver particles (AgNPs) were synthesized based on the following method. 10 

mg of sodium borohydride was added into a 0.1 mM silver nitrate solution (1L), 

which contained 0.7 mM of sodium citrate, and the solution was stirred overnight. 

The reaction was monitored by UV-vis spectroscopy until no further absorption 

increase at 400 nm wavelengths. The solution was then reduced to 100ml by rotary 

evaporator. Final concentration of solution was 1 mM. The mean diameter of the 
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nanosilver particles was 10 nm (range 5 to 15nm) and confirmed by electron 

microscopy.  

1% silver sulphadiazine (SSD) cream (Smith & Nephew Phamacenticals Ltd., USA) 

was used as control in animal experiments (silver content 3.02 mg/g). In in-vitro 

experiments, silver sulphadiazine powder (C10H9AgN4O2S; FW 357.14, 98%) was 

purchased from Sigma-Aldrich. The powder was added and dissolved thoroughly in 

sterile water to make a final concentration of 1 mM.  

 

Wounding Protocol and Treatment  

Mice were randomly divided into three groups, AgNPs group, SSD group and no 

treatment group (n=5). After anesthesia, the dorsal hair was shaved and cleansed 

with 10% w/V povidone iodine before a 1.5×1.5 cm2 full-thickness wound was 

created surgically. In the AgNPs group, AgNPs solution coated dressing was 

topically applied to the wound bed, with the AgNPs concentration in each dressing 

equal to previously described (0.04 mg/cm2).[13] In the SSD group, mice were 

treated by topical application of 30 mg 1% silver sulphadiazine cream, the same 

amount of silver as those in the AgNPs group. The wound dressings were changed 

daily until sacrifice or wound healing. 

 

Morphometric assessment of wound re-epithelization and wound closure 

Morphometric assessment of wound re-epithelization and wound closure was 

examined and documented daily using digital photography. The digital camera was 
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secured on a cantilever at a fixed distance. Wound areas (cm2) were calculated from 

wound perimeter tracings using Photoshop CS (Adobe, USA) in a single-blinded 

manner until the wound was completely healed. The healing rate was expressed as a 

percentage of the original dorsal wound area on day 0 after wounding (1.5x1.5cm2). 

Thus:    

                             Wound area on day n 

% Wound area   =                                           × 100%  

                          Original wound area at day 0 

 

Histological Examination  

At various time points, mice from each group were sacrificed and the original 

wound areas were harvested, formalin-fixed and embedded in paraffin. 5 µm 

sections were microtomed, de-waxed and re-hydrated. Staining was performed with 

hematoxylin and eosin (H&E). In order to observe the extent of re-epithelization 

(migration of keratinocytes in nascent epidermal layer of skin), the harvested wound 

tissues were sectioned through the centre of the wounds, thereby incorporating areas 

from the centre to the original wound edge. Four photographs (40x) were taken and 

cells were counted, with the final data expressed from an average of four sections. 

 

Cell culture  

For in-vitro cell culture, mouse embryo fibroblast cell line (BALB/3T3; clone A31) 

was purchased from ATCC and was cultured as described. Briefly, fibroblasts were 
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seeded and grown in DMEM (Sigma, USA) with 10% FBS and 

penicillin/streptomycin mixture in 5% CO2 at 37°C. The cultures were passaged 

twice before experiments.  

Ex-vivo culture of keratinocytes and fibroblasts were obtained from the dorsal skins 

of mice after sacrifice. The skin was cleansed with 10% w/V povidone iodine and 

washed in the D-hanks solution 5 times and the subcutaneous tissues were removed. 

Each piece of skin (5cm x 5cm) was then cut into 0.5cm x 0.5cm fragments. 0.25 % 

dispase II (Sigma) was added to cover the skin fragments and left to digest at 4°C for 

16 hours. The epidermis was peeled off for keratinocyte culture. The dermis tissue 

was put into a fresh dish for fibroblast culture. The epidermal tissues harvested were 

cultured in 8-well plates using epidermal keratinocyte medium with 10% fetal 

bovine serum. Dermal tissues harvested were cultured in 8-well plates using DMEM 

containing 10% fetal bovine serum. 100µl of AgNPs solution (50 µM) was added to 

wells, with SSD as the control. In each well, 10 random visual fields (100x) were 

chosen to calculate the outgrowth cell number. 

 

Immunohistochemistry (IHC) and fluorescence staining 

Healing wound tissues were harvested and processed as previously. The endogenous 

peroxidase was quenched by treated in 3% hydrogen peroxide/methanol for 10 min. 

Sections were incubated for 1 hour at room temperature with blocking solution 

containing 5% normal goat serum (Dako Bioresearch, USA). For antigen retrieval of 

alpha-SMA staining, the sections were further blocked for nonspecific binding with 
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10% normal goat serum before primary antibody (anti-α-SMA, Abcam Ltd, USA) 

(1:100) was added. The sections were incubated overnight at 4°C before rinsing in 

PBS, and then incubated with HRP-conjugated secondary antibody (Santa Cruz, 

USA) for 1 hour. Positive signals were developed using DAB (3,3’-diaminobenzide 

tetrahydrochloride) and counterstained with hematoxylin. FITC-conjugated goat 

anti-mouse antibody was used as the secondary antibody for PCNA (PC10, Santa 

Cruz, USA) (1:200) for fluorescence staining. The tissues were washed three times 

in 1x PBS and stained with DAPI prior to microscopy.  

For immunostaining of type I collagen and α-SMA in cell culture, fibroblasts grown 

in chambers and mounted on glass slide with cover. AgNPs or SSD was added to the 

medium to make concentration of 50 µM. The cells were incubated for 48 hours and 

fixed in 4% paraformaldehyde. Samples were then washed with 0.25% Trion X-100 

(Sigma). 1% BSA was used to block non-specific binding before the addition of 

anti-α-SMA antibody (Abcam Ltd, USA) (1:100) or anti-type I collagen antibody 

(Abcam Ltd, USA) (1:100). TRITC-conjugated goat anti-mouse antibody (1:200) 

and TRITC-conjugated goat anti-rabbit antibody (1:200) were respectively used as 

the secondary antibody. The samples were washed three times and incubated on 

DAPI for 1 minute. Images were viewed under microscopy. 

 

Hydroxyproline (Hyp) detection 

For the determination of the hydroxyproline concentration, Medugorac’s method was 

performed.[14] The collagen content in supernatant was estimated from the 
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hydroproxyline concentration by multiplying its value by 7.46. Hydroxyproline (Hyp) 

kit was purchased from JianChen Gene Company (Nanjing, PR China) to detect the 

production of Hyp and content of collagen in supernatant. 0.875 x105 cells were 

seeded in 1 ml DMEM (Sigma, USA) with 10% FBS and penicillin/streptomycin 

mixture on each well of 6 well-plate in 5% CO2 at 37°C and incubated for 24 hours. 

Treatment with various concentrations of silver nanoparticles was added and then 

incubated for 2 days. Supernatant in each well was collected and made in triplicates 

for test tubes. 250µl of supernatant and 50µl digestive solution were added to the test 

tubes and incubated for 3 hours in 37°C warm bath. Then, 500µl of isopropanol, 

500µl of oxidant of solution, 1 ml of 7% trihydrated chloramine-T solution were 

added. These were mixed well and incubated for 15 minutes at 60°C. The tubes were 

centrifuged at 3500rpm for 10 minutes at room temperature. The absorbance in each 

tube was measured at 550 nm in a microtiter plate reader (Bio-Rad Inc, USA). The 

average values from triplicate readings were calculated.  

                    

MTT assay 

Cell proliferation assay kit (Roche, Germany) was used to measure cell proliferation 

rate and reduction in cell viability during apoptosis or necrosis. 2x103 cells were 

plated out, in triplicate, into wells of a microtiter plate. Three control wells with 

medium alone were used to provide blanks for absorbance readings. Treatment with 

various concentrations of silver nanoparticles was added, followed by 100 µL of MTT 

Reagent to each well, including controls. When purple precipitate was clearly visible 
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under the microscope, 100 µL of Detergent Reagent was added to all wells, including 

control. The plate was covered and left in the dark for overnight in 37°C incubator. 

The plate cover was removed and the absorbance in each well was measured at 570 

nm in a microtiter plate reader (Bio-Rad Inc, USA). The average values from 

triplicate readings were calculated and the blank was subtracted from the average 

value.  

 

Statistic analysis 

Statistical analyses were performed using Student’s paired t-test. A p value of < 0.05 

was considered significant. 

 

Results 

Accelerated wound closure by silver nanoparticles in early phase of wound healing  

The earliest histological change in the wound bed after wounding is wound 

contraction. This is a vital process to minimize open wound area. Wound contraction 

is effected through activated fibroblasts located on the wound edge. These 

differentiate into the myofibroblasts, which will secret actins and elastic fibers for 

wound contraction. In order to assess the wound-contraction rate, we measured the 

percentage of wound bed area at various time points until complete wound closure. 

In our model, untreated wounds closed after 28.1±1.60 days. In mice treated with 

silver nanoparticles, this event took only 18.4±1.26 days, while wounds closed in 

24±0.67 days in animals treated with silver sulphadiazine (p＜0.01) (Figures 1 
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A&B).  

We next calculated the rate of wound closure using the formula described previously. 

As can be seen in Figure 1C, the rate of wound closure in the AgNPs group from 

day 9 post wounding significantly increased when compared with control (p<0.01), 

with the wound area decreased to 31.23% of original size as early as day 12 and to 

3.34% on day15. These observations further confirmed that silver nanoparticles 

could accelerate the wound closure.  

 

Silver nanoparticles promote re-epithelization through increased keratinocyte 

migration and proliferation 

After wounding, although the myofibroblasts (differentiated from fibroblasts) and 

the extracellular matrix provide the necessary environment for wound contraction, it 

is the proliferation and migration of keratinocytes from the wound edge that provide 

cells for wound covering through re-epithelization (Figure 2A). We therefore asked 

whether silver nanoparticles could exert their effects on the proliferation of 

keratinocytes, and thus re-epithelization. First, histological sections taken from day 

7 wounds were studied. Although H&E staining showed that the epithelium at the 

wound edge of all wounds migrated towards the centre, the epithelial tongue 

(indicated by the vertical line) in AgNPs group was found to move faster than 

controls (Figure 2B). The same phenomenon was observed when the extent of 

growth of the epithelial tongues was measured at three different time points (Figure 

2C)  (p＜0.01). Using immunohistochemistry to stain for cell divisions in epithelial 
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tongue area, we further confirmed that there was an increase in cell proliferation in 

animals treated with AgNPs (Figure 2D). The average number of proliferating 

keratinocytes in each group obtained by counting in five random visual fields under 

the microscope also showed significantly more proliferating keratinocytes in the 

AgNPs group than in the other two groups (Figure 2E) (p＜0.01). Histological 

examination performed on the healed wounds showed also that AgNPs group 

showed the closest resemblance to normal skin (Figure 2F).  

Taken these findings together, although we found a higher density of proliferating 

cells in the epidermal layer in the AgNPs group during the healing phase, the fact 

that the overall histology of the healed skin resembled that of normal epithelium 

would suggest that silver nanoparticles could trigger the maturation of the 

proliferating keratinocytes.  

 

Enhanced keratinocyte outgrowth and inhibited fibroblast proliferation by silver 

nanoparticles 

In order to further understand the possible individual action of silver nanoparticles 

on various skin cell types separately, keratinocytes and fibroblasts were isolated, and 

cultured ex-vivo. After the addition of AgNPs to the culture medium, we found a 

significant increase in keratinocyte proliferation when compared to control (Figure 

3A). Furthermore, this effect appeared to sustain for up to 7 days (Figure 3B).  

In contrast, when fibroblasts were cultured ex-vivo, there was a reduction in the cell 

number in the presence of AgNPs (Figures 3 C&D) (p＜0.01).  
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To determine if the reduction in fibroblast number was due to toxicity of AgNPs, 

MTT assay was performed. Our results here demonstrated that at 100µM or less, 

AgNPs was relatively non-toxic to fibroblasts (Figure 4A). Furthermore, when we 

determined the level of production of hydroxyproline and collagen in fibroblasts, we 

showed that silver nanoparticles could significantly decrease the production of these 

proteins in the supernatant (Figure 4B-D). This would suggest that the addition of 

silver nanoparticles could change the normal phenotype of the fibroblasts. 

 

Differentiation of myofibroblasts from fibroblast driven by silver nanoparticles   

When one looks more closely at the events duing wound healing, wound contraction 

certainly plays a significant role. We therefore asked whether the effects of silver 

nanoparticles on fibroblasts could be due to the differentiation of fibroblasts into 

myofibroblasts, with a consequent decrease in cell proliferation.  

Here, we stained cultured fibroblast for collagen I and α-SMA after the addition of 

sivler nanoparticles. As shown in figure 5A, there was a marked reduction of 

collagen I expression. On the other hand, the expression of α-SMA was markedly 

increased (Figure 5B). Taken together, it would suggest a change in phenotype from 

fibroblasts to myobibroblasts.  

To further confirm this finding in vivo, we next took wound sections from our 

experimental animal groups and stained for α-SMA, a marker for myofibrobalsts. 

Normally, α-SMA could only be detected in small amount in normal skin. Here, the 

amount of α-SMA in day 7 wounds in the AgNPs group was significant more when 
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compared to the control groups. (Figure 5C). Thus, it would appear that silver 

nanoparticles could indeed drive the differentiation of resident fibroblasts into 

myofibroblasts in the early phase of wound healing, thereby help to accelerate 

wound bed contraction.  

 

Discussion 

The antibacterial action of silver has been known since ancient times. As a result, 

this precious metal has long been utilized to treat infectious diseases. Despite this, 

only recently have researchers been beginning to unravel some of the mechanisms 

of action of silver. It exerts its antibacterial property by interfering with the 

respiratory chain of the cytochromes and components of the microbial electron 

transportation system, and also binds and inhibits bacteria DNA replication.[15-17] 

Others have found that silver nanoparticles had anti-bacterial and anti-inflammatory 

properties in infectious wound.[18] Nevertheless, the mechanism of action of silver 

on wound healing remains unresolved. In our previous study, we showed that 

topically delivered silver nanoparticles promoted wound healing in a burn wound 

model through their effective antibacterial properties. Furthermore, it appeared that 

silver could modulate cytokine production.[12] In the burn model, it was relatively 

difficult to observe the re-epithelization process and other effects exerted by silver 

on a cellular level during wound healing because of cellular destruction from the 

burn injury. To further clarify and dissect out any possible effects of silver 

nanoparticles on various cell types, we adopted a surgical wound on dorsal skin in 
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mouse. The clean and infection free wound would make it possible to observe the 

morphological change during re-epithelization and wound contraction.  

In this study, we found that, as in the burn wound model, animals treated with silver 

nanoparticles had significantly faster wound closure when compared to the silver 

sulphadiazine group. This result further confirmed the beneficial effects of silver 

nanoparticles, as a treatment for skin wounds. Furthermore, our results would 

suggest that silver in the nano form was a more effective drug than silver 

compounds for wound healing treatment, even when infectious and inflammatory 

factors were eliminated. Our previous study already showed that the addition of 

silver nanoparticles to the wound would reduce both local, as well as systemic 

inflammation, and resulted in faster healing. However, the effect of nanosilver on 

various skin cell types at a biological level is yet unclear. As wound healing involves 

re-epithelization process and wound contraction, it would be prudent to study any 

possible effects of nanosilver on individual cell types. Re-epithelization is a 

complex and multistep process, which involves keratinocyte migration and 

proliferation in the epidermal layer.[5, 19-20] In addition, wound contraction, a cellular 

event which occurs in the dermal layer through myofibrobalsts, minimizes the open 

wound bed by pulling the neighboring tissue towards the wound center. A few 

studies looking into wound healing events have shown that many drugs could 

promote wound healing by accelerated re-epithelization via enhanced keratinocyte 

migration and proliferation.[21-24] In our study, we firstly focused on the 

keratinocytes to investigate the morphological change mediated by silver 
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nanoparticles. In agreement with others, our histological finding demonstrated that 

silver nanoparticles indeed promoted proliferation and migration of keratinocytes 

from wound edge towards the wound center. This was further confirmed in our 

ex-vivo wound model experiment, using keratinocytes from peeled fresh epidermis.  

Apart from faster healing, we also observed from histological evaluation that the 

healed wounds of animals in the silver nanoparticles group resembled closely to 

normal skin, with relatively thin epidermis and normal hair follicles. Taken together, 

it would suggest that silver nanoparticles could trigger the differentiation and 

maturation of keratinocytes, although at this point, the underlying mechanism 

through which silver operates is still unclear. One possibility may be the Notch 

signaling pathway, which is one of the most conserved and commonly used 

communication channels in animal cells. Studies have demonstrated this pathway is 

indispensable for cells in various stages of maturation, including terminal 

differentiation of keratinocytes.[25-26] As a result, further studies are currently 

underway to ascertain if silver does interact with Notch or its ligands. Indeed, as 

keratinocytes arise from the epidermal stem cells, there is also a possibility that 

silver nanoparticles can promote the differentiation and maturation of keratinocytes 

through the stimulation of skin stem cell.[27-30] This is an important issue because the 

ability to manipulate stem cells would open a new dimension in terms of tissue 

regeneration in the future.  

On the other hand, although fibroblasts have been targets of intense research in the 

formation of keloid and hypertrophic scars, their role in the process of wound 
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healing has largely been neglected.[31-38] In our study, we also focused on the 

fibroblasts in the dermal layer. As our ex-vivo experiments clearly showed, in 

contrast to the effects seen in keratinocytes, the addition of silver nanoparticles 

suppressed the proliferation of fibroblasts. For this finding, we further confirmed that 

the suppression was not due to the toxic effects of silver. Looking back at the results 

on keratinocytes, it would appear that silver nanoparticles could drive differentiation 

and maturation. We therefore asked if the same effect could be seen in fibroblasts. 

Indeed, the decreased level of collagen in fibroblasts treated with nanosilver already 

would suggest that this could be the case. This was further confirmed by the 

increased expression of α-SMA, a marker of myofibroblast, both in in-vitro, as well 

as in-vivo experiments. This would suggest, as in the case of keratinocytes, that 

silver nanoparticles could indeed stimulate cell maturation, and hence, driving 

fibroblasts into myofibrobalsts during healing. Taken all the evidence taken together, 

we can now explain, at least at the cellular level, the reason why silver nanoparticles 

could significantly promote wound healing. It would seem that both wound 

re-epithelializaion and contraction are increased through the differential effects of 

silver on keratinocytes and fibroblasts. Despite this, how silver interacts at the 

molecular level during wound healing still remains to be determined. Microarray 

analyses are currently ongoing in our laboratory to try to unravel this mystery and 

identify the signaling pathways involved.  

In addition to the beneficial effects on wound healing, the reduction of collagen 

production in fibroblasts by silver nanoparticles may suggest a role in anti-fibrosis 
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therapy, which could be useful in preventing and perhaps treating keloids and scars. 

If indeed this were to be the case, silver nanoparticles could prove to be the Holy 

Grail for wound healing without scars. In conclusion, our study further confirmed the 

significantly beneficial effects of silver nanoparticles on wound healing and for the 

first time, provided the evidence that silver could act on keratinocytes and fibroblasts. 

This has further enhanced our knowledge of the biological events exerted by this 

precious metal.  
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Figure legends 

Figure 1 – The effects of silver nanoparticles on wound healing.  Excisional 

skin wounds were created on the dorsum of mice and they were divided in 3 groups 

(n=5) and received nanosilver particles, silver sulphadiazine or no treatment 

respectively. The wounds were inspected daily and the rate of healing was recorded. 

A. The time to complete wound closure in each group. (** p<0.01; *** p< 0.001) B. 

Photographs of wound appearance from three groups at various time points. C. The 

rate of wound closure at various time points after wounding.  

 

Figure 2 - Re-epithelization and proliferation of keratinocytes mediated by the 

silver nanoparticles during healing.  

A. Schematic drawing of a wound indicating the location of proliferating cells 

examined. Region 1 represents the re-epithelization area and region 2 represents the 

epithelial tongue. B. The wounds were excised and stained with H&E on day 7 after 

wounding and the degree of wound closure was examined histologically. 

Proliferating cells arising form wound edge on the left migrated towards to the 

wound centre on the right. The blue bar indicates the leading edge of the epithelium. 

C. The extent of re-epithelization on day 7, day 10, and day 15 after wounding was 

measured histologically in three groups and represented (* p<0.05, ** p<0.01). D. 

immunohistochemistry staining of proliferating cells in the epithelial tongue area on 

day 15 after wounding. Dash line indicates the divison between the epithelial layer 

and the dermal layer. Scale bar: 20 um. E. Average numbers of proliferating cells in 
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epithelial tongue area on day 15 sample after wounding  (** p<0.01; *** P< 0.001) 

F. Histological morphology of healed wounds in animals from the three groups.  

 

Figure 3 - The effects of AgNPs on keratinocytes and fibroblasts in culture.  

Keratinocytes and fibroblasts were obtained from the dorsal skins of mice, digested 

with 0.25 % dispase II, and cultured in appropriate media with either AgNPs or SSD. 

The number of cells in the outgrowth area was counted in each well and averaged. 

A. The number of keratinocytes growing out from the epidermal margin in three 

groups after 2 days culturing (Scale: 100 um). B. Keratinocyte numbers in the 

outgrowth area counted and averaged at 6 time points. C. The number of fibroblasts 

grown from the dermal margin in three groups after 2 days culturing (Scale: 100 

um). D. Fibroblast numbers in the outgrowth area at 6 time points.  

 

Figure 4 – The effects of AgNPs on fibroblasts apoptosis and protein 

production.  

Mouse embryo fibroblast cell line (BALB/3T3; clone A31) was cultured in medium 

with the addition of AgNPs for 24 hours and the effects on cell death and protein 

(collagen and hydroxyproline) were studied.  

A. Viability of BALB/3T3 cells treated with AgNPs at a concentration range from 10 

to 400 uM is expressed as percentage of untreated cells. Values are the mean±SE. (** 

p<0.01) B. Hyp content in supernatants of BALB/3T3 cells under different AgNPs 

concentration after 24 hours culture. The concentration was measured using 
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absorbance readings. C. Collagen content of BALB/3T3 cells in different AgNPs 

concentrations. 

 

Figure 5 - Stimulated differentiatiation of fibroblast into myofibroblasts 

mediated by silver nanoparticles.  

A. 3T3 fibroblasts cell line was cultured and treated with SSD and AgNPs and  the 

level of collagen I was measured using immunohistochemistry.  

B. Staining for myofibroblasts using α-SMA after culturing 3T3 fibrobalsts with 

AgNPs or SSD for 48 hours. (Red: α-SMA; Blue: nuclear of fibroblasts; Scale bar: 

40 um).  

C. α-SMA staining on Day 7 wounds of animals treated with either AgNPs or SSD 

and a comparison to normal skin. (Scale bar (left): 40 um. Scale bar (right): 20 um)  
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